TechnoKontrol ${ }^{\text {m }}$ WHERE YOUR SAFETY IS OUR PRIORITY

ESTIMATION OF
THE PETROCHEMICAL EVAPORATION LOSS FROM
FIXED ROOF STORAGE TANK

DATA OF TANK AND CONTENT

1. Internal diameter of the tank

D $=36 \mathrm{~m} \quad=118 \mathrm{ft}$
2. Straight height of the tank
3. Tank content
4. Average daily ambient temperature
5. Average daily ambient temperature change
$\mathrm{H} \quad=15.875 \mathrm{~m}=52 \mathrm{ft}$
ISO-OCTANE $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$
6. True vapor pressure of isooctane at $90^{\circ} \mathrm{F}$
(Assume liquid surface is $5^{\circ} \mathrm{F}$ above average ambient temperature)
7. Average outage

$$
\mathrm{H}_{\mathrm{o}} \quad=26 \mathrm{ft}
$$

(Assume average outage $=1 / 2$ tank height)
8. Turnovers per year
$\mathrm{K}_{\mathrm{T}}=36$
9. Paint factor (assumed)
$\mathrm{F}_{\mathrm{P}} \quad=1.3$
10. Adjustment factor for small-diameter tanks

C $=1$
(C is unity for tanks 30 ft in diameter or larger.)

CALCULATION OF BREATHING LOSSES PER YEAR

Referring to the (Ref. no.1, equation (5) of page no.7), the breathing losses per year, L_{y}, is given by as following:-

$$
\begin{aligned}
\mathrm{L}_{\mathrm{y}} & =\frac{24}{1000} \times\left(\frac{P}{14.7-P}\right)^{0.68} \times D^{1.73} \times H_{O}{ }^{0.51} \times \Delta T^{0.5} \times F_{P} \times C \\
& =\frac{24}{1000} \times\left(\frac{1.392}{14.7-1.392}\right){ }^{0.68} \times 118^{1.73} \times 26^{0.51} \times 20^{0.5} \times 1.3 \times 1 \\
& =608 \mathrm{bbl} \text { per year } \\
& =608 \mathrm{bbl} * 42 \mathrm{gal} / \mathrm{bbl}=\underline{\mathbf{5 5 3 6}} \mathbf{\text { gallon } / \text { year }}
\end{aligned}
$$

CALCULATION FOR WORKING LOSSES PER YEAR

Referring to the (Ref. no. 1 equation (6) of page no.7), the breathing losses per year, F , is given by as following:-
Tank Capacity, $V=\left[\frac{\pi}{4} \times 118^{2} \times 52\right] \times \frac{7.48}{42}=101277 \mathrm{bbl}$

$$
\begin{aligned}
\mathrm{F} & =\left(\frac{3 P V}{10000}\right) \times K_{T}=\frac{3 \times 1.392 \times 101277}{10000} \times 36 \\
& =1523 \mathrm{bbl} \text { per year } \\
& =1523 \mathrm{bbl} * 42 \mathrm{gal} / \mathrm{bbl}=\underline{\mathbf{6 3 9 6 6} \text { gallon } / \text { year }}
\end{aligned}
$$

CALCULATION FOR TOTAL EQUIVALENT LOSS OF GASOLINE, L_{g}

Then equivalent loss of gasoline is given by as follows:-

$$
\mathrm{L}_{\mathrm{g}}=\mathrm{L}_{\mathrm{y}}+\mathrm{F}=25536+63966=\mathbf{8 9 5 0 2 \text { gal } / \text { year }}
$$

CALCULATION FOR LOSS OF ISO-OCTANE PER YEAR, L

Referring to the (Ref. no. 1 equation (4) of page no.7), the loss of ISO-OCTANE can be calculated as following:-

$$
\mathrm{L}=\left(\frac{0.08 M}{W}\right) L_{g}
$$

Where, $\mathrm{M} / \mathrm{W}=19.713$ (Gal per lb-Mole) (Ref.no. 1 page no.7)
Then, $\quad \mathrm{L}=0.08 \times 19.713 \times 89502=141148$ gal per year
Then, $\quad \rho=5.794$ (lb per gallon)
ρ is the liquid density of ISO-OCTANE (ref.no. 1 page no.6)
Therefore, $L=141148 \times 5.794=\underline{\mathbf{8 1 7 8 1 2} \mathbf{~ l b} / \text { year }}$

Regarding the crude oil, the working loss is about 75% of all other organic liquids under same conditions. (Please review Ref. no. 2 page 12)

REFERENCES:

No.1:- API Bulletin on Petrochemical Evaporation Loss From Storage Tanks (API Bull 2523 - First Edition, November 1969)

No.2:- Emissions Calculations
(As per attached)

