

ESTIMATION OF THE PETROCHEMICAL EVAPORATION LOSS FROM FIXED ROOF STORAGE TANK

SAMPLE CALCULATION FOR ISO-OCTANE STORAGE TANK

DATA OF TANK AND CONTENT

1.	Internal diameter of the tank	D	= 36 m	= 118 ft
2.	Straight height of the tank	Н	= 15.875 m	= 52 ft
3.	Tank content	ISO-O	OCTANE [(CH ₃) ₃ CCH ₂ CH(CH ₃) ₂]	
4.	Average daily ambient temperature	Т	= 85 °F = 29.3 °C	
5.	Average daily ambient temperature change	ΔT	$= 20 ^{\circ}\text{F} = 11.1 ^{\circ}\text{C}$	
6.	True vapor pressure of isooctane at 90 °F	Р	= 1.392 psia (Ref.no.1 – page no.10)	
	Assume liquid surface is 5 °F above average ambient temperature)			
7.	Average outage	Ho	= 26 ft	
	(Assume average outage = $\frac{1}{2}$ tank height)			
8.	Turnovers per year	\mathbf{K}_{T}	= 36	
9.	Paint factor (assumed)	F_{P}	= 1.3	
10.	Adjustment factor for small-diameter tanks	С	= 1	
	(C is unity for tanks 30 ft in diameter or larger.)			

CALCULATION OF BREATHING LOSSES PER YEAR

Referring to the (Ref. no.1, equation (5) of page no.7), the breathing losses per year, L_y , is given by as following:-

$$L_{y} = \frac{24}{1000} \times \left(\frac{P}{14.7 - P}\right)^{0.68} \times D^{1.73} \times H_{o}^{0.51} \times \Delta T^{0.5} \times F_{P} \times C$$
$$= \frac{24}{1000} \times \left(\frac{1.392}{14.7 - 1.392}\right)^{0.68} \times 118^{1.73} \times 26^{0.51} \times 20^{0.5} \times 1.3 \times 1$$

= 608 bbl per year

= 608 bbl * 42 gal / bbl = <u>25536 gallon / year</u>

CALCULATION FOR WORKING LOSSES PER YEAR

Referring to the (Ref. no.1 equation (6) of page no.7), the breathing losses per year, F, is given by as following:-

Tank Capacity, $V = \left[\frac{\pi}{4} \times 118^2 \times 52\right] \times \frac{7.48}{42} = 101277 \text{ bbl}$

Page 1 of 2

$$F = \left(\frac{3PV}{10000}\right) \times K_T = \frac{3 \times 1.392 \times 101277}{10000} \times 36$$

= 1523 bbl per year
= 1523 bbl * 42 gal / bbl = 63966 gallon / year

CALCULATION FOR TOTAL EQUIVALENT LOSS OF GASOLINE, Lg

Then equivalent loss of gasoline is given by as follows:-

$$L_g = L_y + F = 25536 + 63966 = 89502 \text{ gal / year}$$

CALCULATION FOR LOSS OF ISO-OCTANE PER YEAR, L

Referring to the (Ref. no.1 equation (4) of page no.7), the loss of ISO-OCTANE can be calculated as following:-

$$\mathcal{L} = \left(\frac{0.08M}{W}\right) L_g$$

Where, M/W = 19.713 (Gal per lb-Mole) (Ref.no.1 page no.7)

Then, $L = 0.08 \times 19.713 \times 89502 = 141148$ gal per year

Then, $\rho = 5.794$ (lb per gallon)

 ρ is the liquid density of ISO-OCTANE (ref.no.1 page no.6)

Therefore, $L = 141148 \times 5.794 = 817812 \text{ lb / year}$

Regarding the crude oil, the working loss is about 75% of all other organic liquids under same conditions. (Please review Ref. no.2 page 12)

REFERENCES:

- No.1:- API Bulletin on Petrochemical Evaporation Loss From Storage Tanks (API Bull 2523 – First Edition, November 1969)
- No.2:- Emissions Calculations (As per attached)